
International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1

ISSN 2229-5518

IJSER -2012

http://www.ijser.org

Effective Testing: A customized hand book
for testing professionals and students

Abdul Rauf E M , Sajna P.V

Abstract— Software implementation errors are one of the most significant contributors to software vulnerabilities, making soft-
ware testing an essential part of system assurance.This publication provides a customized course material for learning the basics
of a software testing.It introduces the key concepts, methods, test techniques, test phases, test types, test cycle and software test-
ing process.

Index Terms— Show stopper, Exception handling, Resource hogging, Sandwich , Big bang, Risk based testing, Clean room software engineering,

Combinational test design

—————————— ——————————

I INTRODUCTION

This Even though software development industry spends
more than half of its budget on Software testing and mainten-
ance related activities; software testing has received little at-
tention in our curricula. This suggests that most software tes-
ters are then either self taught or they acquire needed skills on
the job perhaps through informal and formal mechanisms
used commonly in the industry. Lack of proper attention in
acquiring testing skills is resulting in less utilization of test
resources and thus results in less test efficiency of organisa-
tion. Review of extant literature on software testing lifecycle
(STLC) identifies various Software testing activities and ways
in which these activities can be carried out in conjunction with
the software development process. This hand book tries to
give a basic knowledge about various skills that software tes-
ters need to possess in order to perform activities effectively in
a given phase of STLC

A. HISTORY

 Software has been tested from as early as software has been
written (Marciniak 1994). Software testing has therefore be-
come a natural part of the software development cycle, al-
though its purpose and execution has not been the same all the
time. Early thoughts of testing believed that software could be
tested exhaustively, i.e. it should be possible to test all execu-
tion paths (Marciniak 1994). However, as software systems
grew increasingly complex, people realized that this would
not be possible for larger domains. Therefore, the ideal goal of
executing tests that could succeed only when the program
contained no defects became more or less unreachable (Marci-

niak 1994). In the 80‘s, Boris Beizer extended the former
proactive definition of testing to also include preventive ac-
tions. He claimed that test design is one of the most effective
ways to prevent bugs from occurring (Boris Beizer 2002).
These thoughts were brought further into the 90‘s in the form
of more emphasizes on early test design (Marciniak 1994).
Nevertheless, Marciniak (1994) states that the most significant
development in testing during this period was an increased
tool support, and test tools have now become an important
part of most software testing efforts. As the systems to devel-
op become more complex, the way of performing testing also
needs to be developed in order to meet new demands. In par-
ticular, automated tools that can minimize project schedule
and effort without loosing quality are expected to become a
more central part of testing.

B. PURPOSE OF TESTING

 Marciniak 1994- defines testing as ‗a means of measuring
or assessing the software to determine its quality‘. Here, quali-
ty is considered as the key aspect in testing and Marciniak
expounds the definition by stating that testing assesses the
behaviour of the system, and how well it does it, in its final
environment. Without testing, there is no way of knowing
whether the system will work or not before live use. Although
most testing efforts involve executing the code, Marciniak
claims that testing also includes static analysis such as code
checking tools and reviews. According to Marciniak, the pur-
pose of testing is two-fold: to give confidence in that the sys-
tem is working but at the same time to try to break it. This
leads to a testing paradox since you cannot have confidence in
that something is working when it has just been proved oth-
erwise. If the purpose of testing only would be to give confi-
dence in that the system is working, the result would accord-
ing to Marciniak be that testers under time pressure only
would choose the test cases that they know already work.
Therefore, it is better if the main purpose of testing is to try to
break the software so that there are fewer defects left in the
delivered system. According to Marciniak, a mixture of defect-

————————————————

Abdul Rauf EM is a research scholar in Christ University –Bangalore and
also working as test lead in IBM India Software Labs, Bangalore. He received
his bachelor’s degree in Computer Engineering from the University of Cochin,
Kerala -India (2000), master’s degree in Telecommunication and Software
Engineering from Bits – Pilani (2004). He has total 11+ years of software
industry experience with proven expertise in different skills and with in-
volvement in various life cycles of project developmentand testing

Sajna P.V has 3+years of testing exeperince in avenionics filed and she re-
cieved her bachelor’s degree and Masters degree in computer science from
Calicut university,Kerala_india

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 2

ISSN 2229-5518

IJSER -2012

http://www.ijser.org

revealing and correct-operation tests are used in practice, e.g.
first, defect-revealing tests are run and when all the defects are
corrected, the tests are executed again until no defects are
found

II TESTING PHASES

 Software testing is the process of verifying, validating and
defect finding in a software application or program. In verifi-
cation we are ensuring that the construction steps are done
correctly (are we building the product right), where as in vali-
dation we are checking that deliverable (code) is correct (are
we building the right product). In software testing a defect is
the variance between the expected and actual result. During
defects finding, its ultimate source may be traced to a fault
introduced in specification, design or development phases.
Following are the different levels of testing doing in STLC

 Unit test

 Integration test

 System test

 Acceptance test

 Regression testing

Defects can be categorized in to different groups based on
severity and priority of the defects. Below list shows the
common defect category used in software industry

 Show stopper - Not possible to continue testing
because of the severity of the defect

 Critical – Testing can proceed but the application
cannot release until the defect is fixed

 Major – Testing can continue but the defects may
results serious impacts in business requirements if
released for production

 Medium - Testing can continue and the defect will
cause only minimal departure from the business
requirements when in production

 Minor –Testing can continue and the defect won‘t
affect release

 Cosmetic - Minor cosmetic issues like colors, fonts,
and pitch size that do not affect testing or produc-
tion release

Figure -1 shows the V-model of software testing. V- Model

incorporates testing in to the entire SDLC cycle and highlights
the existence of different levels of testing and depicts the way
each relates to a different development phase. Figure 2 shows
5 different testing phases each with a certain type of test asso-
ciated with it. Each phase has entry criteria and that must be
met before testing start and specific exit criteria that should
meet before certification of the test. Entry and exit criteria are
defined by the test owners listed in the test plan

A. Unit testing

Unit testing test the functionality of basic software units. A
unit is the smallest piece of software that does something
meaningful; it may be a small function, a statement or a li-
brary. Unit test is also called module test where the developer
tests the code he/she has produced. Unit tester mainly looking
whether the code implemented as per low level design docu-
ment (LLD or functional requirements) and the code structure.
Following are some of the faults that uncover during unit test-
ing

 Unit implementation issues – Checking that the
unit has implemented the algorithm correctly

 Input data validation errors – Unit inputs are vali-
dated properly before it used

 Exception handling – Checking whether unit han-
dles all the environment related errors/exceptions

 Dynamic resource related errors –Verify whether
the dynamic resources (memory, handles etc ...)
are allocated and deallocated

 UI formatting errors – Verify UI is consistent, cor-
rect user interface (tabs, spelling, colors …)

 Basic performance issues – Each unit is critical to
overall system performance , checking is the unit
implemented is fast enough or not

Fig. 1

Fig. 2

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 3

ISSN 2229-5518

IJSER -2012

http://www.ijser.org

Designing of unit test cases is done using functional specifi-
cation or LLD of the units. Any techniques like white
box/black box/ grey box can be applied to design unit test
cases. Also the structure of the code can be used as another
input for improving the quality of the unit test cases. During
test cases design some test cases may come as common to
many units, such test cases can be considered as a standard
check list and can use as reusable test case. If the unit is not a
user interface (UI), it is necessary to write test driver (drives
the unit under – test with inputs and stores the outcome of the
test) and test stubs (dummy storage module used for replacing
the unit not available) to automate the unit testing

B. Integration testing

Integration testing starts as soon as few modules are ready
and the developers integrate their code for testing the inter-
faces implemented by their code .High level design document
(HLD) is the main input for designing the test cases for inte-
gration testing. Following are some of the faults that uncover
during integration testing

 Interface integrity issues – Test whether the unit

comply to the agreed upon interface specification
 Data sharing issues – Verifying the common data is

handled properly , synchronization issues etc …

 Exception handling – Handles all the environment
related errors/exceptions

 Resource hogging issues – Check whether any unit
consume excessive resources in the integrated units
failing

 Build issues – Cases like multiple unit use a version
of common unit that each depends upon

 Error handling and bubbling of errors - Check that
the error returned by a unit is handled by the
higher unit appropriately

 Functionality errors – Functionality formed by the
integration of unit(s) work

Integration testing is proceeded based on integration strat-
egy (order of integration of module) that the project follows.
Since testing is an act to find issues that pose severe risk as
early as possible, it is preferable to test those interfaces that
pose the high risk. Mainly four types of integration strategy
employed in software industry

 Top-down – Integration starts form highest chain
of control (top-most module) and this kind of inte-
gration uses where upper level interfaces are im-
portant

 Bottom-up –Integration starts form lowest chain of
control (bottom-most module) and this kind of in-
tegration uses where lower level interfaces are im-
portant

 Sandwich – Approach uses when not all on the top
or not all at the bottom are important, this will be a
mixture of top-down and bottom-up approach

 Big bang –This is pretty dumb strategy but this will
find issues, the main problem of this approach is
the difficulty in debugging

The approach will be decided based on the criticality of the

interfaces and the most critical interfaces should be tested first
and the others later. The criticality of the interface can decide
once the architecture of the project is ready. Normally most of
the projects will follow sandwich approach

C. System testing

A system is not a just our code that we developed but that
will be a collection of developed code, supporting libraries ,
data bases (if any) , Web/App servers (if any), operating sys-
tem and hardware. In system testing phase we test the systems
as a whole. For ensuring the maximum benefit of the system
test, it is preferable to perform system testing in an environ-
ment that is similar to the target environment. Following are
the types of faults discovered in system testing.

 Functional errors – Verification of the system that it

has implemented the functionality correctly
 Performance issues –Making sure that the system is

fast enough
 Load-handling capability –Ensuring that the sys-

tem handling the real life situation with stated re-
sources

 Usability issues –Verify that the system is friendly
and easy to use

 Volume handling –Verify that the system is capable
of handling large volume of data

 Installation errors –Making sure that the system is
able to install correctly using the installation docs

 Documentation errors –Checking that the docu-
mentation done for the system is correct

 Language handling issues- Verify that the system is
implemented the multiple locales correctly. Local-
ization and internationalization testing is perform-
ing in this stage

D. Acceptance testing

Acceptance testing is the final testing done by the test team
and the customer together before the system put in to opera-
tion. Acceptance testing starts after completing the system test.
The purpose of the acceptance test is to give confidence in that
the system is working, rather than trying to find defects. Ac-
ceptance testing is mostly performed in contractual develop-
ment to verify that the system satisfies the requirements
agreed on. Acceptance testing is sometimes integrated into the
system -testing phase

E. Regression testing

Regression testing is doing for building the confidence of
the system that has undergone some changes like modification
of the code, defects fixing or added some new module etc. In
this test user will rerun the existing test suites/test cases and

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 4

ISSN 2229-5518

IJSER -2012

http://www.ijser.org

make sure that the recent changes has not impacted the func-
tionality of the system. Regression test selection is one impor-
tant task in this phase and need to do carefully for avoiding
unnecessary execution. Regression testing is a repeated task
and one of the most expensive activities doing in STLC. For
saving the effort, it is always good to look for automation so
that we can save lot of manual effort. (Harrold 2000) Accord-
ing to Harrold, some studies indicate that regression testing
can account for as much as one-third of the total cost of a
software system

F. Sanity test

Sanity testing will be performed whenever cursory testing
is sufficient to prove that the system is functioning according
to specifications. A sanity test is a narrow regression test that
focuses on one or a few areas of functionality. Sanity testing is
usually narrow and deep. It will normally include a set of core
tests of basic GUI functionality to demonstrate connectivity
to the database, application servers, printers, etc.

G. Alpha testing

Testing of an application when development is nearing
completion; minor design changes may still be made as a re-
sult of such testing. Typically done by end-users or others, not
by programmers or testers

H. Beta testing

Testing when development and testing are essentially com-
pleted and final bugs and problems need to be found before
final release. Typically done by end-users or others, not by
programmers or testers

III TESTING TECHNIQUES

 Effective test cases are the heart of the software testing.
For designing test cases testers will use various test techniques
in industry and also uses options like domain knowledge, his-
tory of past issues etc. Following are some of the test tech-
niques used in industry

A. Positive and Negative testing

Positive testing – Check that software performs its intended
function correctly and execute programs to check that it meets
requirements.

Negative testing –Execute programs with an intent to find
defects and discover defects in the system. Negative testing
involves testing of special circumstances that are outside the
strict scope of the requirements specification, and will there-
fore give higher coverage

B. Risk based testing

Risk is the possibility of a negative or undesirable outcome,
quality risk is a possible way that something about your or-
ganization‘s products or services could negatively affect
stakeholder satisfaction. Through risk based testing we can
reduce quality risk level. This type of testing has number of
advantages

 Finding defects earlier in the defect cycle and thus
avoid the risk in schedule delay

 Finding high severe and priority bugs than unim-
portant bugs

 providing the option of reducing the test execution
period in the event of a schedule crunch without
accepting unduly high risks

C. Defect testing

Defect testing or fault based testing is doing to ensure that
certain types of defects are not there in the code. It is a nega-
tive testing approach to discover defects in the system. Nor-
mally testing team will identify and classify the defects that
have occurred in the previous release of the product. Based on
this classification test team will decide where to add more test-
ing efforts and also will decide how deeply need to conduct
testing on those areas. Test team will use defect tracking tool
or defect database as an input for this activity. The root cause
analysis available in the defect or that is prepared will play a
major role in defect classification.

D. White box testing

White box testing or glass box testing or structural testing
method uses the code structure to come up with test cases. For
doing effective white box testing tester need to have a good
understanding of the code. Normally there is a miss-
understanding that white box testing can apply only in unit
level testing. It can definitely be applied at the unit level. It can
be applied at the higher levels like integration level, system
level. Unit testing becomes difficult as the size of the code rap-
idly increases at higher levels.

E. Black box testing

In black box testing or functional testing. the tester should
have a clear understanding of the specification of the prod-
uct/project that he is testing. Specification covers both data
(input and out put specification) as well as business logic
specification (processing logic involved).Requirement specifi-
cation is one of the major input doc for doing black box test-
ing. Black box testing can apply at any levels of testing. Some
of the black box techniques detect functionality issues while
some of them help in detecting non-functional issues.

F. Grey box testing

Gray box testing is combination of white and black box test-
ing. This testing will identify the defects related to bad design
or bad implementation of the product. Test engineer who exe-
cutes gray box testing has some knowledge of the system and
design test cases based on that knowledge. Tester applies a
limited number of test cases to the internal working of the
software under test. Remaining part of the execution will do
based on data specification and business logic. The idea be-
hind the gray box testing is that one who knows something

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 5

ISSN 2229-5518

IJSER -2012

http://www.ijser.org

about how the products works on the inside, one can test it
better

G. Statistical testing

The purpose of statistical testing is to test the software ac-
cording to its operational behaviour, i.e. by running the test
cases with the same distribution as the users intended use of
the software. By developing operational profiles that describes
the probability of different kinds of user input over time; it is
possible to select a suitable distribution of test cases. Develop-
ing operational profiles is a time consuming task but a proper
developed profile will help to make a system with a high reli-
ability. In short a statistical test will help to make a quantita-
tive decision about a process.

H. Clean room software engineering

Clean room software engineering is more of a development
process than a testing technique. The idea clean room will help
to avoid high cost defects by writing source code accurately
during early stages of development process and also employ
formal methods for verifying the correctness of the code be-
fore testing phase. Even though the clean room process is time
consuming task but helps to reduce the time to market be-
cause the precision of the development helps to eliminate re-
work and reduces testing time. Clean room is considered as a
radical approach to quality assurance, but has become ac-
cepted as a useful alternative in some systems that have high
quality requirements.

I. Static testing

Testing is normally considered as a dynamic process, where
the tester will give various inputs to the software under test
and verify the results. But static testing is of different kind of
testing that is used for evaluating the quality of the software
without executing the code. Static testing is fall in the verifica-
tion process that ensures the construction steps are done cor-
rectly with out executing the code. One commonly used tech-
nique for static testing is the static analysis-functionality that
the compilers for most modern programming languages have.
Reviews and inspection are the most commonly used static
testing method in almost all software development organiza-
tions. Static testing is applicable to all stages but particularly
appropriate in unit testing, since it does not require interaction
with other units.

J. Review and inspection

Each author has there on definition for the terms review
and inspection. As per IEEE Std. 610.12-1990 the terms are
defined as

Review: A process or meeting during which a work prod-
uct, or set of work products, is presented to project personnel,
managers, users, customers, or other interested parties for
comment or approval. Types include code review, design re-
view, formal qualification review, requirements review, and

test readiness review‘ (IEEE 1990). IEEE standard says that,
the purpose of a technical review is to evaluate a software
product by a team of qualified personnel to determine its suit-
ability for its intended use and identify discrepancies from
specifications and standards. Following are some of the in-
puts to the technical review

 A statement of objectives for the technical review
(mandatory)

 The software product being examined (mandatory)

 Software project management plan (mandatory)

 Current anomalies or issues list for the software
product (mandatory)

 Documented review procedures (mandatory)

 Relevant review reports (should)

 Any regulations, standards, guidelines, plans, and
procedures against which the software product is
to be examined (should)

 Anomaly categories (See IEEE Std 1044-1993)
(should)

Inspection: A static analysis technique that relies on visual
examination of development standards, and other problems.
Types include code inspection; design inspection‘ (IEEE 1990).
Inspection has many names , some called software inspection
that could cover design and documentation , some others will
call it as code inspection that relates more on source code writ-
ten by developer. Fagan inspection is another name that came
as the name of the person who invented QA and testing
method. Code inspection is a time consuming task but statis-
tics telling that it may cover up to 90% of the contained errors
if we apply that in a systematic way. Graph below shows
time , employee relation ship in a software development proc-
ess .

IEEE Standard for Software Reviews (IEEE 1028-1997 standard)

is talking about manual static testing methods like inspections ,
reviews and walkthroughs

Fig. 4

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 6

ISSN 2229-5518

IJSER -2012

http://www.ijser.org

k. Walk-throughs

Walk-throughs are techniques used in software develop-
ment cycle for improving the quality of the product. It helps to
detect anomalies, evaluate the conformance to standards and
specifications etc. It is considering as a techniques for collect-
ing ideas and inputs from team members during the design
stage of the software product and also as for exchanging tech-
niques and conduct training to the participants , thus to raise
the level of team mates to same programming style and de-
tails of the product. Walk-through leader, recorder, author of
the product under development and team members are some
of the roles defined in walk-through method.

IV TEST CASE DESIGN TECHNIQUES

 A test case is a set of data and test programs (scripts) and
their expected results. Test case validates one or more system
requirements and generates a pass or fail. The Institute of Elec-
trical and Electronics Engineers defines test case as "A set of
test inputs, execution conditions, and expected results devel-
oped for a particular objective, such as to exercise a particular
program path or to verify compliance with a specific require-
ment." Selecting adequate test case is an important task to test-
ers other wise that may result in too much testing, or too little
testing or testing wrong things. Following are the characteris-
tics of a good test

 A test case has a reasonable probability of catching

an error

 It is not redundant
 It‘s the best of its breed

 It is neither too simple nor too complex

While doing test case design, designer should have an in-
tension to find errors so that he can start searching ideas for
test cases and try working backwards from an idea of how the
program might fail. Following are some of the techniques we
use in industry for designing effective test cases.

1) Equivalence classes

It is essential to understand equivalence classes and their
boundaries. Classical boundary tests are critical for checking
the program‘s response to input and output data. You can
consider test cases as equivalent, if you expect same result
from two tests. A group of tests forms an equivalent class if
you believe that

 They all test same thing

 If one test catch catches a bug , the others probably
will too

 If one test doesn‘t catch a bug, the others probably
won‘t either.

Tests are often lumped into the same equivalence classes
when

 They involve the same input variables

 They result in similar operations in the program
 They affect the same output variables

 None force the program to do error handling or all
of them do

Different people will analyse programs in different way and
comes up with different list of equivalent classes. This will
help you to select test cases and avoid wasting time repeating
what is virtually the same test. You should run one or few of
the test cases that belongs to an equivalence class and leave
the rest aside. Below are some of the recommendations for
looking equivalence classes

 Don‘t forget equivalence classes for invalid inputs

 Organize your classification into a table or an out-
line

 Look for range of numbers

 Look for membership in a group

 Analyse responses to lists and menus

 Look for variables that must be equal
 Create time-determined equivalence classes

 Look for variable groups that must calculate to a
certain values or range

 Look for equivalent output events
 Look for equivalent operating environments

2) Boundaries of equivalence classes

Normally we use to select one or two test cases from each
equivalence class. The best ones are the class boundaries, the
boundary values are the biggest, smallest, soonest, shortest,
loudest, fastest ugliest members of the class i.e., the most ex-
treme values. Program that fail with non-boundary values
usually fail at the boundaries too. While analysing program
boundaries it is important to consider all outputs. It is good to
remember that input boundary values might not generate
output boundary values.

3) Black box test techniques

This type of techniques can be categorized in to three broad
types

 Those useful to design test scenarios (High level
test design techniques)

 Those useful to generate test values for each in-
put(Low level test design techniques)

 Those useful in combining test values to generate
test cases

 High level test design techniques

Some of the commonly used high level test design tech-
niques are

 Flowchart – Represent flow based behaviour (Each
scenarios has a unique flow in the flow chart)

 Decision table – Represent rule based behaviour (
Each scenario is an unique rule in the decision ta-
ble)

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 7

ISSN 2229-5518

IJSER -2012

http://www.ijser.org

 State machine – Represent state based behaviour (
Each scenario is an unique path in the state transi-
tion diagram

 Law level test design techniques

 Following are some of the some of the low level test design
techniques

 Boundary value analysis - Generate test values on
and around boundary

 Equivalence partitioning – Ensues that all represen-
tative values have been considered

 Special value - generate interesting test values
based on experience/guess

 Error based vales - Generate test values based on
past history of issues

Combinational test design techniques
This technique will combine test values to generate test

cases, some of the combinational test design techniques are
mentioned below

 Exhaustive testing – Combine all vales exhaus-
tively (All combination of all test inputs are consid-
ered)

 All-pairs /Orthogonal – Combine to form minimal
yet complete combinations. This will ensures that
all distinct pairs of inputs have been considered

 Single-fault – Combine such that only a single in-
put in a test case is faulty (Generate negative test
cases where only one input is incorrect)

4) White box test techniques

This technique uses the structure of the code for designing
test cases, following are some of the aspects of the code that
constitutes the code structure

 Flow of control – Is the code sequential / recursive
/ concurrent

 Flow of data – Where is the data initialized and
where it is used

 Resource usage – What dynamic resources are allo-
cated , used and released

5) Coverage based testing

Statement coverage is an oldest structural test technique
that targets to execute every statement and branch during a set
of tests. Statement coverage will give an idea about the per-
centage of total statements executed. Since programs with for
example loops contain an almost infinite number of different
paths, complete path coverage is impractical. Normally, a
more realistic goal is to execute every statement and branch at
least once. This technique can be varied in several ways and is
usually tightly knit to coverage testing.

 Branch coverage – Measuring the number of condi-
tions / branches executed as a percentage of total
branch

 Multiple condition coverage – Measuring the num-
ber of multiple conditions executed as a percentage
of total multiple conditions

 Statement coverage – Measuring the number of
statements executed as a percentage of total state-
ments

6) Random input testing

Rather than explicitly subdividing the input in to a series of
equal sub ranges, it is better to use a series of randomly se-
lected input values, that will ensues that input value is likely
as any other , any two equal sub ranges should be about
equally represented in your tests. When ever you cannot de-
cide what vales to use in test cases, choose them randomly.
Random inputs doesn‘t mean ―what ever inputs come to your
mind‖ but a table of random numbers or a random number
generating function . Random testing using random inputs
can be very effective in identifying rarely occurring defects,
but is not commonly used since it easily becomes a labour-
intensive process.

7) Syntax testing

This is a data-driven test technique where well-defined syn-
tax rules validate the input data Syntax testing can also be
called grammar -based testing since grammars can define the
syntax rules. An example of a grammar model is the Backus
Naur Form, which can represent every combination of valid
inputs.

V TYPES OF TESTS

1) Load test

Load testing is used for verifying the software product is
able to handle real life operations with the stated resources. It
can be done in controlled lab conditions or in a field. Load test
in a lab will help to compare the capabilities of different sys-
tems or to measure the actual capability of a single system.
The main aim of the load testing is to determine the maximum
limit of the work that can handle with out significant perform-
ance degradation.

2) Stress test

This test will check that worst load it can handle is well
above real life extreme load. The stress test process can in-
volve quantitative test done in a lab , such as measuring the
frequency of errors or system crashes. It can also use for
evaluating the factors like availability of the system, resistance
to denial of service attacks.

3) performance test

Check that the key system operations perform with in the
stated time. Performance testing is very difficult to conduct
because the performance requirements often are poorly speci-
fied and the test requires a realistic operational environment
to get reliable results. Automated tool support is required for
doing proper performance evaluation of the software.

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 8

ISSN 2229-5518

IJSER -2012

http://www.ijser.org

4) Scalability test

Check that the system is able to handle more loads with
more hardware resources. We can consider scalability testing
as an extension of performance testing. Scalability is the factor
that needs to consider in the beginning of the project planning
and designing. The architect of the product should have a
proper picture about the product before he plans the scalabil-
ity of the product under development. For making sure that
the products is truly scalable and for identify major work
loads and mitigate bottlenecks, it is very important to rigor-
ously and regularly test it for scalability issues. The results
from the performance test can consider as the baseline, and we
can compare the results of the performance test results to
know the application is scaled up or not.

5) Reliability test

This test will check that the system when used in an ex-
tended manner is free from failures. In systems with strict reli-
ability requirements, the reliability of the system under typical
usage should be tested. Several models for testing and predict-
ing reliability exist but in reality, the exact reliability is more
or less impossible to predict

6) Volume test

Check that the system can handle large amounts of data.
Volume test is mainly concentrating about the concept of
throughput instead of response time on other testing. Capacity
drivers are the key to do effective volume testing for the appli-
cation like messaging systems, batch systems etc... A capacity
driver is something that directly impacts on the total process-
ing capacity. For a messaging system, a capacity driver may
well be the size of messages being processed.

7) Usability test

Check whether the system is easy to operate by its end us-
ers. When the system contains a user interface, the user-
friendliness might be important. However, it is hard to meas-
ure usability since it is difficult to define and most likely re-
quire end-user interaction when being tested. Nevertheless, it
is possible to measure attributes like for example learn-ability
and handling ability by monitoring potential users and record
their speed of conducting various operations in the systems

8) Security test

This test will ensure that the integrity of the system is not
compromised. Security test is also called penetration testing
and used to test how well the system protects against unau-
thorized internal or external access, wilful damage, etc; may
require sophisticated testing techniques. Testers must use a
risk-based approach, grounded in both the system‘s architec-
tural reality and the attacker‘s mindset, to gauge software se-
curity adequately. By identifying risks in the system and creat-
ing tests driven by those risks, a software security tester can
properly focus on areas of code in which an attack is likely to
succeed. This approach provides a higher level of software
security assurance than possible with classical black-box test-
ing

9) Recovery test

Recovery test will verify that that the system is able to re-
cover from erroneous conditions graciously. It also tests how
well a system recovers from crashes, hardware failures, or
other catastrophic problems

10) Storage test

Check that the system complies with the stated storage re-
quirements like disk/memory.

11) Internationalization test (I18N)

This test will verify the ability of the system to support mul-
tiple languages. Internationalization test is also called as I18N
test. I18N testing of the products is targeted to uncover the
international functionality issues before the system‘s global
release. Mainly this will check whether the system is correctly
adapted to work under different languages and regional set-
tings like the ability to display correct numbering system –
thousands, decimal separators, accented characters etc... . I18N
testing is not same as the L10N testing. In I18N testing product
functionality and usability are the focus, where as L10N test-
ing focuses on linguistic relevance and verification that func-
tionality has not changed as a result of localization

12) Localization test (L10N)

Check that the strings, currency, date, time formats for this
language version has been translated correctly. Localization
testing is also called L10N testing. Localization is the process
of changing the product user interface and modification of
some initial settings to make it suitable for another region.
Localization testing checks the quality of a product's localiza-
tion for a particular target culture/locale. Localization test is
based on the results of I18N testing, which verifies the func-
tional support for that particular culture/locale. L10N testing
can be executed only on the localized version of a product.

13) Configuration test

Check that the system can execute on different hardware
and software configuration

14) Compatibility test

Check that the system is backward compatible to its prior
versions

15) Installation test

Check that the system can be installed correctly following
the installation instructions. The installation test for a release
will be conducted with the objective of demonstrating produc-
tion readiness.

16) Documentation test

Documentation test will make sure that the user documen-
tation, online help is inline with software functionality. Test-
ing of user documentation and help-system documentation is
often overlooked because of a lack of time and resources
(Watkins 2001). However, Watkins claims that accurate docu-

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 9

ISSN 2229-5518

IJSER -2012

http://www.ijser.org

mentation might be vital for successful operation of the system
and reviews are in that case probably the best way to check
the accuracy of the documents

17) Compliance test

Check that the software has implemented the applicable
standard correctly

18) Accessibility test

Accessibility test will check that the product under test is
accessibility complaint or not. With this test we are targeting
four types of users namely people with visual impairments,
hearing impairments, motor skills(Inability to use keyboard
or mouse) and cognitive abilities (reading difficulties, memory
loss). Normally we plan separate testing cycle for accessibility
testing. Inspectors or web checkers are some example of tools
available in market for doing accessibility testing

VI TEST STRATEGY

A Test Strategy document is a high level document that
talks about the overall approach for testing and normally de-
veloped by project manager. This document is normally de-
rived from the Business Requirement Specification document.
This static document contains standards for testing process
and won‘t undergo changes frequently. This is acting as an
input document for test plan. A good test strategy will answer
the below questions

 Where should I focus?

 On what features?

 On what type of potential issues?

 What test technique should I use for effective test-
ing?

 How much of black box, white box?

 What type of issues should I look for?

 Which is best discovered by testing?

 Which is best discovered via inspection?
 How do I execute the tests? Manual/Automated?

 What do I automate?

 What tool should I consider?

 How do I know that I am doing a good job?

 What metrics should I collect and analyse?

K. Contents of test strategy

 Features to focus on:

 -- List down the major features of the products
- -Rate importance of each features

 (Importance = Usage frequency * failure
 Criticality)

L. Potential issue to uncover

 Identify potential faults

 Identify potential incorrect inputs that can result in
failure

 State the type of issues that you will aim to uncover

 Identify what types of issues will be detected at
each level of testing

M. Types of test to be done

 State the various tests that that need to be done to
uncover the above potential issues

 Identify the test techniques that may be used for
designing effective test cases

N. Execution approach

 Continue what test will be done manu-
ally/automated

 Outline tools that may be used for automated test-
ing

O. Test metrics to collect and analyse

 Identify measurements that help analyse the strat-
egy is working effectively

VII TEST PLANNING

Test plan details out the operational aspects to executing the
test strategy. Test plan will be derived from the product de-
scription, software requirement document, use case docu-
ments etc. It may be prepared by a test lead or test manager. A
test plan outlines the following

 Effort / time needed

 Resources needed

 Schedules

 Team composition

 Anticipated risk and contingency plan

 Process to be followed for efficient execution

 Roles of various team members and their work
As per the IEEE 829 format, following are the contents of

the test plan
1. Test Plan Identifier : Unique company

generated number to identify this test plan
2. References : List all documents that sup-

port this test plan
3. Introduction : A short introduction to the

software under test
4. Test Items : Things you intend to test

within the scope of this test plan
5. Software Risk Issues : Identify what soft-

ware is to be tested and what the critical
areas are

6. Features to be Tested: This is a listing of
what is to be tested from the users view-
point of what the system does

7. Features not to be Tested: Listing of what
is not to be tested from both the Users
viewpoint of what the system does and a

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 10

ISSN 2229-5518

IJSER -2012

http://www.ijser.org

configuration management/version con-
trol view.

8. Approach : This is your overall test strat-
egy for this test plan

9. Item Pass/Fail Criteria: What are the
Completion criteria for this plan? The goal
is to identify whether or not a test item has
passed the test process

10. Suspension Criteria and Resumption Re-
quirements: Know when to pause in a se-
ries of tests or possibly terminate a set of
tests. Once testing is suspended how is it
resumed and what are the potential im-
pacts

11. Test Deliverables
12. Remaining Test Tasks: There should be

tasks identified for each test deliverable.
Include all inter-task dependencies, skill
levels, etc. These tasks should also have
corresponding tasks and milestones in the
overall project tracking process

13. Environmental Needs : Are there any spe-
cial requirements for this test plan

14. Staffing and Training Needs : State the
staffing learning/training needs to be
done to execute the test plan

15. Responsibilities: Who is in charge? There
should be a responsible person for each
aspect of the testing and the test process.
Each test task identified should also have a
responsible person assigned

16. Schedule : Detail the work schedule as
Gantt chart

17. Planning Risks and Contingencies : State
the top five (or more) anticipated risks
and mitigation plan

18. Approvals : Who can approve the process
as complete and allow the project to pro-
ceed to the next level

19. Glossary

VIII TEST CYCLE

Test cycle is the point of time wherein the build is validated
and it takes multiple test cycles to validate a product. Each test
cycle should have a clear scope like what features will be
tested and what test will be done. Figure -3 below shows the
test development life cycle. Normally we used to run four
rounds of the test cycle. In this period will be catching around
80% of the errors. With the majority of these errors fixed, stan-
dard and/or frequently used actions will be tested to prove
individual elements and total system processing in cycle 3.
Regression testing of outstanding errors will be performed on
an ongoing basis. When all major errors are fixed, an addi-
tional set of test cases are processed in cycle 4 to ensure the
system works in an integrated manner. It is intended that cy-

cle 4 be the final proving of the system as a single application.
There should be no Sev1 or Sev2 class errors outstanding prior
to the start of cycle 4 testing. Figure 4 shows the 4 different
cycles (release) of testing that normally follows in software
development.

Fig. 3

Fig. 4

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 11

ISSN 2229-5518

IJSER -2012

http://www.ijser.org

II. TEST ESTIMATION

Test Estimation is the estimation of the testing size, testing
effort, testing cost and testing schedule for a specified software
testing project in a specified environment using defined meth-
ods, tools and techniques. Effort estimation can consider as a
science of guessing. Some of the terms commonly used in test
estimation are

 Testing Size – the amount (quantity) of testing that
needs to be carried out. Some times this may not be
estimated especially in Embedded Testing (that is,
testing is embedded in the software development
activity itself) and in cases where it is not neces-
sary

 Testing Effort – the amount of effort in either per-
son days or person hours necessary for conducting
the tests

 Testing Cost – the expenses necessary for
 testing, including the expense towards human
 effort

 Testing Schedule – the duration in calendar days
 or months that is necessary for conducting the
 tests
To do a proper estimation we need to consider the
 following areas

 Features to focus

 Types of test to do
 Development of automated scripts

 Number of test cycles

 Effort to design , document test plan, scenar-
ios/cases

 Effort need to document defects

 Take expert opinion

 Use the previous similar projects as inputs

 Breaking down the big work of testing to smaller
pieces of work and then estimation (Work break
down structure)

 Use empirical estimation models

IX TEST REPORTS

There are multiple number of test reports are using in vari-
ous kinds of testing. Some of the commonly used test reports
in industry are mentioned below.

 Weekly status report: Weekly status report gives
an idea about the works completed in a specific
week against the plan of actual execution. Compa-
nies have there on standard template for reporting
this status

 Test cycle report: As mentioned in section 7,
products testing have multiple cycles. Management
will expect the correct status of each cycle for track-
ing the project. Test team is responsible for giving
report accomplishments in the cycle and potential
testing related risks in a standard template ap-
proved the company.

 Quality report: Quality report will give an idea
about objectives and subjective assessment of qual-
ity of product on a specific date. A product quality
is depends on factors like scope , cost and time.
Quality lead will consider all these 3 factors before
reporting the status in standard template

 Defect report: A defect report will give a detailed
description of defects. This is one of the important
deliverable in STLC. An effective test reports will
reduce the number of returned defects. A good test
report will reflect the credibility of the tester and
also will help for speeding up the defect fixes.

 Final test report: This is the report that summarizes
the test happened in various levels and cycles.
Based on this report the stake holder can assesses
the release quality of the product.

CONCLUSION

Based on the work done by the team in the test execution and
management area, below are some of the recommendations
which the author would like to highlight.

 Know your efficiency to know what to improve

 Institute risk based testing for catching defect in early
test cycle

 Setup regression frame work as early as possible and
move repeatedly executing system test scenarios to
regression

 Introduce light weight test automation

 Use IBM Rational Build Forge , that you can easily in-
tegrates into your current environment and supports
major development languages, scripts, tools, and plat-
forms; allowing you to continue to use your existing
investments while adding valuable capabilities
around process automation, acceleration, notification,
and scheduling.

 Automate your install verification test (IVT) so that
you can run the IVT for each and every build with
out manual intervention

 Introduce proper test tracking system using easily
understandable graphical approach

 ACKNOWLEDGMENT

I would like to offer my deepest gratitude to the following
people for their help through out the preparation of this
hand book

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 12

ISSN 2229-5518

IJSER -2012

http://www.ijser.org

V Balaji, Manmohan Singh and Sundari Sadasivam for
their straightforward and constructive feedback on the
hand book.

 References
 [1] Cem Kaner, Jack Falk , Hung Quoc Nguyen, „Testing

 Computer Software‟ 2nd Edition , 2001 ,ISBN:81-7722-

 015-2

 [2] Boris Beizer, „Software Testing Techniques‟, 1st Reprint

 Edition, 2002, ISBN: 81-7722-260-0
 [3] Marciniak, J., ‘Encyclopedia of Software Engineering‟,

 John Wiley & Sons Inc, 1994, ISBN 0-471-54004-8

 [4] Booz Allen Hamilton, Gary McGraw, ‘Software Secu ri-

ty Testing‟, IEEE SECURITY & PRIVACY, 2004, PP

 1540-7993

 [5] Toshiaki Kurokawa ,Masato Shinagawa, „Technical

 Trends and Challenges of Software Testing‟ , Science

 & Technology trends 2008 –Quarterly review no .29
 [6] IEEE 829-1998 Format -Test Plan Template , „Software

 Quality Engineering -Version7.0‟ 2001

 [7] IEEE Std. 610.12-1990, “Standard Glossary of Soft

 ware Engineering Terminology”, 1990.

